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Abstract

A non-circular shell cross-section with flat sides and circular arc corners is analyzed using the theorem of minimum

potential energy. Two-dimensional, plane strain assumptions are utilized, and the potential energy (PE) expression for

the structure is developed, including first-order transverse shear deformation effects. The unknown displacements are

represented by power series, and the PE expression is rewritten in terms of the summation convention for the power

series. The variation of the PE expression is taken, leading to a linear system of equations that is solved for the un-

known power series coefficients. With the displacements determined, stresses are calculated for a composite sandwich

construction. Excellent agreement is found with other analytical methods and with finite element analyses.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The ultimate goal of the current analysis method is the investigation of three-dimensional cylindrical
shells with non-circular cross-sections subjected to constant internal pressure (see Figs. 1 and 2). The term

‘‘non-circular’’ is very broad, and could cover anything from regular shapes such as ovals, ellipses, triangles

or squares to more unusual shapes such as multi-lobed, ‘‘wavy’’ (i.e., a sinusoidal variation about and

around the mean perimeter) or irregular. Such shapes could be either open or closed, with or without

symmetry. In the current research a closed, symmetric cross-section with a ‘‘rounded square’’ profile is

examined. This profile consists of straight, flat sections at the top, bottom, and sides, connected by circular

arc corners. The two-dimensional case is analyzed first as a stepping stone to the full three-dimensional

analysis. A more detailed treatment of the subject is found in Preissner (2002).
The theorem of minimum potential energy (MPE) is used to bridge the gap between general, closed-form

analytical solutions and extensive finite element analyses. In the current case, the complicated structure

makes a closed-form solution impractical. The desire for eventual numerous and rapid trade studies weighs
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against finite elements. The MPE method is used in the current case to find practical solutions to com-
plicated problems in a reasonable form. The structural shape examined has not been extensively investi-

gated, and offers potential benefits in real-world applications such as trucking and aircraft. The application

of the MPE method as described is also unique.

2. Previous research on application of MPE to shell structures

The prime motivation behind the use of MPE methods is to find approximate solutions to difficult

problems that cannot be solved in closed form. In many instances, this provides an alternative to a full

three-dimensional elasticity solution or extensive finite element analyses. There are two major divisions of

efforts: (1) using MPE methods to obtain governing equations and then find solutions through approxi-

mations of the displacements or stresses (e.g., Wenda, 1985; Tamurov, 1990; McDaniel and Ginsberg, 1993;

Wu and Liu, 1994; Soldatos and Messina, 1998) or (2) using MPE to develop advanced finite element

formulations of complicated problems (e.g., Crull and Basu, 1994; Chroscielewski et al., 1997).

Due to the advanced nature of the formulations, nearly all work examined included the effect of
transverse shear, either linear (He, 1992), second order (e.g., Tamurov, 1990; Sklepus, 1996), or third order
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Fig. 2. Representation of shell mid-plane for three-dimensional problem.
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Fig. 1. (a) Full non-circular cross-section shape. (b) Details of the geometry.
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(e.g., Wu and Liu, 1994; Wu et al., 1995) in the thickness variable. By examining zeroth-, first-, and third-

order shear effects, Messina and Soldatos (1999) show that agreement with three-dimensional elasticity

solutions improves as the order increases. Wu and associates also include the effect of transverse normal

stress and obtain excellent agreement (four to five significant figures) to prior elasticity solutions.
While Ying-guang et al. (1992) and Crull and Basu (1994) use a more complicated Reissner mixed

formulation, whereby they assume both stresses and displacements, most authors assume only displace-

ments. McDaniel and Ginsberg (1993) observe that ‘‘much physical insight is gained by viewing dis-

placement expansions as basis functions for a variational solution. . .’’. A number of different types of

expansions are used for the displacements, including trigonometric series (Wenda, 1985; Wu and Liu, 1994;

Xiaoyu, 1997), Legendre polynomials (Crull and Basu, 1994), Bezier functions (Kumar and Singh, 1997),

and polynomials of one of the coordinate parameters (Soldatos and Messina, 1998). The best results are

obtained when different forms are used in the various coordinate directions, based on the boundary con-
ditions of the edges (Wu and Liu, 1994; Messina and Soldatos, 1999). Methods for solving the subsequent

systems of equations become complicated.

Importantly, Soldatos and Messina (1998) make four observations: (1) if ‘‘the set of basis functions is

complete in the space of the functions that satisfy the edge boundary conditions assumed, the main task

that remains is then to determine the unknown constant coefficients of such an infinite series’’ which is

achieved through a variational (Ritz) or error minimization (Galerkin) approach, (2) sometimes a series

approach is considered ‘‘approximate’’, but if enough terms can be taken, the solution will converge to the

exact one, (3) ‘‘an inappropriate basis may yield a very slowly converging series solution or to [sic] cause
severe numerical instabilities’’, and (4) an orthonormal basis of functions performs better than just an

orthogonal basis by improving numerical stability by keeping matrix condition numbers lower.

It is notable that most of the analyses cover vibrations of laminated shells, as this is a difficult problem

not easily solvable in closed form or economically by finite elements. The analyses covering stresses and

displacements usually employ more complicated theories, such as layerwise formulations that include both

transverse shear and transverse normal stress (Wu and Liu, 1994). However, despite (or perhaps because of)

such complications, nearly all analyses consider what this author would term ‘‘simple’’ structures. In other

words, continuous singly- or doubly-curved shells, possibly of unusual planform. Not truly ‘‘simple’’, yet
the point is that they are regular, continuous structures, not a combination of different pieces. Only two

papers cover non-continuous structures (a shell with edges restricted by beams, Wenda (1985), and the

exhaustive development of finite element methods for complex shells of Chroscielewski et al. (1997)). These

two formulations were not applicable to the current efforts.

In conclusion, it is seen that energy methods are good for situations not readily solvable by other means,

e.g., the combined structure with beams on edges (Wenda, 1985), the vibration of turbine blades (Lim et al.,

1998), or the vibration of open shells (Messina and Soldatos, 1999). None of the analyses address structures

as complicated as the current research. These energy methods fill a solution niche for problems too com-
plicated for closed form, and too expensive or expansive for current finite element methods.

3. Previous research on non-circular cylindrical shells

The general subject of shell analysis has been a fertile area for research for more that a century (Love,

1888). Over this period, there have been more books and papers written on the subject than can be listed

here. Some significant texts include Fl€uugge (1943), Timoshenko and Woinowsky-Krieger (1959), Dym

(1974), and Vinson (1993), among many others. Surveys of the field include papers by Naghdi (1956),

Singer (1982), Simitses (1986), Kapania (1989), and Simitses (1996). The subject of shell theory is very

broad and very deep, and a complete review of shell theory is beyond the scope of this effort.
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A detailed review of previous research in this specific area has been given in Preissner (2002). In this

review, it was seen that the large majority of the research has been performed on the vibratory behavior of

cross-section shapes that could be described in so-called ‘‘closed form’’ (e.g., Bergman, 1973; Suzuki et al.,

1983; Soldatos, 1984; Suzuki and Leissa, 1990; Kumar and Singh, 1993; Suzuki et al., 1996). That is, the
shape is an oval or ellipse where the variation in radius around the perimeter can be described in a simple

expression or expansion of the circumferential coordinate. The current research is differentiated from the

previous work in that it treats the flat and curved sections of the profile as individual structural entities. The

governing equations and boundary conditions are cast in forms specific to those sections, and continuity of

parameters is enforced between them. The unifying concession is that the circumferential coordinate is

taken as the generic arc length, s, rather than a flat-plate-specific y or circular-arc-specific h.
Only a few researchers have reported on the displacement and stress behavior of finite length shells with

non-circular profiles (e.g., Gavelya and Sharapova, 1986; Zhu and Cheung, 1992; Hyer and McMurray,
1999). Gavelya and Sharpova seem to have performed a rigorous analysis of various cross-sections, but the

terseness of the exposition and the lack of substantial numerical results make comparison difficult. Zhu and

Cheung present a very novel concept of transforming the cross-section and allude to finite shell work, but

again, lack of significant numerical results hampers comparison. In comparison, Hyer and McMurray do

an excellent job of presenting both their solution approach and significant numerical results, however, their

work is limited to elliptical sections.

The most relevant efforts in this area have been the work of Potty, Forbes, and Thomsen, as directed by

Dr. Jack Vinson at the University of Delaware. These researchers examined the two-dimensional, plane-
strain or generalized plane-strain analysis of similar cross-sections. The work reported herein extends these

previous efforts by eventually examining a finite length shell with axial boundary conditions.

Potty (1996), and Potty and Vinson (1997), used the theorem of MPE to both develop governing dif-

ferential equations and natural boundary conditions and to formulate approximate solutions. Approximate

solutions were generated by assuming trial displacement functions in the form of trigonometric series

(either sine or cosine). Use of a limited number of terms in the expansions (6 15) caused difficulty with

convergence, particularly in stress results. Using advanced partial differential equation solvers (i.e., Mat-

lab), Forbes (1999) was able to formulate the governing differential equations for the entire cross-section as
a two-dimensional problem and obtain a closed-form solution. The form of the solution, though, was very

complicated (involving combinations of polynomial and trigonometric functions), and extension to three

dimensions was not possible. Thomsen and Vinson (2000a,b) also examined the two-dimensional problem.

Their solution was formulated in terms of a set of coupled, first-order partial differential equations. So-

lution to the equations was by a numerical integration scheme. This approach was very rigorous and

complicated, but also was not extended to three dimensions, due to this level of rigor.

In summary, the research cited in this section provides valuable comparison points for the current efforts.

The most direct comparisons will be made to the two-dimensional results of Forbes. Since these results were
obtained with different methods, favorable comparisons with these data will give confidence that the results

are consistent and correct. There are no direct comparisons for the three-dimensional results. The current

research uses finite element analyses to corroborate both the two- and three-dimensional results.

4. Formulation

For a general elastic body, the potential energy (PE) is comprised of the strain energy of the body, the
work done by surface tractions, and the work done by body forces:

V ¼
Z
R
W dR�

Z
ST

TiUi dST �
Z
R
FiUi dR ð1Þ
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In Eq. (1) W is the strain energy density function (to be defined); R is the volume of the body; Ti is the ith
component of the surface traction; Ui is the ith component of the deformation; Fi is the ith component of a
body force; and ST is the portion of the surface of the body where the tractions are applied. The ‘‘correct’’

displacements will minimize the potential energy of the body (Vinson and Sierakowski, 1987).
The word ‘‘correct’’ is placed in quotations as, due to the great generality of Eq. (1), the displacements

will be ‘‘correct’’ only for the phenomena that one includes. That is, the expression in Eq. (1) can be as

simple or as complex as one desires, including or neglecting effects such as transverse shear, elastic coupling,

moisture, temperature, etc. It is up to the researcher to select the level of rigor, and consequently the level of

solution difficulty, that is required to sufficiently describe the structural problem at hand.

In practice, the variation (extremization) of the PE expression with respect to the displacements gives the

static equilibrium solution. This process can be performed with either generalized displacements (e.g.,

ui ¼ f ðx; y; zÞ) or with an assumed form of the displacements (e.g., uðxÞ ¼ a0 þ a1xþ a2x2 or uðxÞ ¼
A sin xp=l). Use of generalized displacements allows the finding of the governing differential equation and

the ‘‘natural’’ boundary conditions (i.e., those that are necessary and sufficient for the problem). This is

very appealing, however it becomes extremely complicated for even modest structures, and there are entire

books devoted to the application of variational methods to mechanics. General solutions of this nature

involve very advanced applied mathematical concepts such as Sobolev spaces, the Poincar�ee–Steklov ope-

rator, complex coordinate transformations, etc. (e.g., see Chudinovich and Constanda, 2000). Because of

such complicated analyses, this approach remains limited to relatively simple regions (structures). While

this complexity is a drawback, the generalized approach is very important beyond finding governing
equations and natural boundary conditions. Such a variational approach is the foundation for the finite

element method (FEM; e.g., see Reddy and Reedy, 1984; Cook et al., 1989 or Kaliakin, 2001).

Because of the above complexity, the approach chosen for this research was to use an assumed form for

the displacements. The main benefit of this choice is that much of the mathematics becomes definite and

concrete, and with an appropriate choice of trial displacement function, can be evaluated in a very

straightforward way. The drawback to this approach is the loss of the full solid mechanics generality of the

generalized displacement approach. This trade off was considered acceptable as this research was seeking a

specific solution for a specific problem.
The strain energy function is formulated as:

U ¼
Z
R
W dR ¼

Z
R

1

2
rijeij

� �
dR ð2Þ

where W is the strain energy density function, rij are the stresses, eij are the strains, and R is the volume of

the body. This is an important step, as this is where one includes the relevant strains for the body in

questions. For example, the following is the strain energy density function expressed in Cartesian coor-
dinates:

W ¼ 1
2
rijeij ¼ 1

2
rxxexx þ 1

2
ryyeyy þ 1

2
rzzezz þ rxyexy þ rxzexz þ ryzeyz ð3Þ

Therefore, if one neglected transverse shear deformation (TSD) and transverse normal stress, then the rzz,
rxz, and ryz terms would be omitted.

Next, one uses the constitutive and strain–displacement relations to restate the strain energy in terms of

displacements only. This is another important step, as here one decides whether the constitutive relations

are for isotropic, orthotropic or anisotropic materials, whether they are linear or non-linear, and whether

they include effects such as moisture and temperature. In addition, one must decide whether the strain–

displacement relations are going to be linear or non-linear to account for large displacements.

Now that the expression is stated solely in terms of displacements, one assumes a representative form for
those displacements. The possibilities are endless, limited only by the ingenuity of the analyst. Some options
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include polynomials, trigonometrics, infinite series, etc. Combinations of forms can also be used, such as

using a polynomial in one coordinate direction while using a trigonometric function in another direction.

Some examples of these are:

wðxÞ ¼ a0 þ a1xþ a2x2 þ a3x3

wðxÞ ¼ a0 þ
X1
n¼1

an cos
npx
l

�
þ bn sin

npx
l

�

wðx; sÞ ¼
X1
j¼0

X1
i¼0
aijxisj

ð4Þ

The unknown coefficients in these expressions (an, bn, aij, etc.) now become the unknowns that are sought.

These assumed forms might, but do not have to, satisfy the boundary conditions on the body. If they do, the

problem is easier; if they do not, it adds more complexity but is still tractable. Once the representative form is

determined, it is substituted into the strain energy function, the traction term(s), and the body force term(s).
Next, one performs the indicated integrations over the volume of the body. This eliminates the spatial

variables and, depending on the assumed form, is usually an uncomplicated integration. After this, one

takes the variation, with respect to each of the variable coefficients in the assumed form, of the final in-

tegrated PE expression. (With the use of the definite, assumed form for the displacements, this amounts to

taking partial differentials of the PE expression with respect to each of the variable coefficients––the Ra-

leigh–Ritz method.) The variation is then set equal to zero. For the current problem, this results in a set of

linear algebraic equations in the unknown coefficients. The solution of this system provides the coefficients

for the assumed form. Once the coefficients are known, they can be substituted back into the assumed
displacement expression and any derived quantities (such as stresses) can be calculated. This is essentially a

multi-variable extremization problem.

Depending on the assumed form of the displacement and the boundary conditions, there may be more

variables than equations. If the assumed form satisfies all the boundary conditions, this does not occur.

Usually this is only possible with simple domains and straightforward boundary conditions (i.e., clamped,

simply supported). The trigonometric functions are usually found to work best in this case. However,

complicated domains and/or boundary conditions make this difficult. If the assumed form does not satisfy

all the boundary conditions, there are other methods for developing the set of equations. Some of these are
elimination, constraint (‘‘simple’’ multivariate optimization with constraints), and quadratic programming

(‘‘robust’’ optimization with constraints). Optimization of functions with or without equality or inequality

constraints is itself a broad subject. Further very rigorous and technical information on optimization can be

found in many references (e.g., Gill and Murray, 1974; Fletcher, 1981; Bertsekas, 1982).

While the elimination method (Greenberg, 1998) is appropriate for simple problems, the constraint

method or more accurately, constrained minimization via Lagrange multipliers, overcomes the faults of the

elimination method for more complicated problems. In the constraint method, one substitutes the assumed

form for the displacements into the various boundary condition expressions (say N of these). Then, instead
of solving these expressions for some of the coefficients, each boundary condition expression is treated as a

constraint on the problem, is set equal to zero, and a unique Lagrange multiplier is applied to each. The

assumed form for the displacements (with M unknown coefficients) is also substituted into the PE ex-

pression. This PE expression is then modified by adding in (or subtracting; it does not matter) the N
boundary condition expressions with their respective Lagrange multipliers. The variation of the PE ex-

pression, with respect to the unknown coefficients is now taken (giving M equations in M þ N ¼ P un-

knowns; the Lagrange multipliers are also treated as unknowns). After the variation is taken, the boundary

condition expressions are used to obtain a ‘‘square’’ system (M equationsþ N boundary conditions ¼ P
equations). This method is rigorously described in Fletcher (1981) or Greenberg (1998).
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For the current work, the PE expression is being extremized. However, rather than just a few coefficients

and one constraint, there will be numerous unknown coefficients and a significant number of constraints, ki,
depending on the definition of the trial functions and boundary conditions. It will be seen subsequently that

the objective function (the PE expression) is at most quadratic, and that the constraints (the boundary
conditions) are linear equality constraints. These facts are beneficial simplifications to the more complex

three-dimensional problem.

In the implementation of this method, the PE expression and its variation were developed analytically.

After taking the variation and setting it equal to zero, the problem that remains is a linear system. To solve

this, the double-precision IMSL routine DLSLSF was used (Anonymous, 1994). This routine solves a real

symmetric system of linear equations (i.e., Ax ¼ b) without iterative refinement. After the variation was

found analytically, a FORTRAN program was developed to compute the necessary coefficients for the A

matrix and b vector. These were passed to the DLSLSF routine, which returned a vector x with the solution
(the trial displacement function coefficients).

5. Geometry, loads, boundary conditions, and solution

As a concept, the structure under examination in this research could be considered the fuselage of a large

transport aircraft. The ‘‘rounded square’’ or ‘‘rounded rectangle’’ cross-section offers possible advantages

in cargo-carrying capacity and in the structural packaging of the vehicle. It is conceivable that such an
aircraft would have a pressurized fuselage for passenger or cargo comfort. If one assumes a conventional

wing–body–tail arrangement of such an aircraft, then the fuselage is likely to be long and have a constant

cross-section over a considerable portion of its length. We assume that the ends of the fuselage are closed in

the usual manners; the front by a cockpit and cargo door, the back by the empennage and another cargo

door. The loading is therefore a distributed, constant internal pressure.

As a beginning, the constant cross-section portion of the structure is examined (see Figs. 1 and 2). End

effects are neglected, as is any longitudinal variation in loading, geometry, material or boundary conditions.

Consequently, the analysis is reduced from a three-dimensional structure to that of a two-dimensional ring
under plane strain assumptions. If the axial (plane strain) direction of the fuselage is taken as the x-axis, the
plane strain assumptions state that:

ex ¼ 0 cxz ¼ 0 cyx ¼ 0 ð5Þ

One could instead perform a generalized plane strain analysis where ex ¼ constant, however this was not

pursued at this time.

The current research places as much emphasis on finding effective and efficient analytical methods as on

the determination of the structural response. The goal was to start with the simpler two-dimensional

problem to develop useable analytical tools, and then attempt to extend those tools to the three-dimen-

sional problem. Thus, the shape being analyzed is the rounded-square; it is the simplest shape of this type,

and allows for the maximum use of symmetry. The composition of the structure is assumed to be a
composite laminate, and more specifically a composite sandwich. The effects of TSD are included; trans-

verse normal stress and body forces are neglected.

The full square section is reduced to a one-eighth section by symmetry. The coordinate system is a right-

handed x–s–z system, with the x-direction along the axis of the cylinder, the s-direction around the cir-

cumference from the top, and the z-direction outward through the thickness. The extent of the initial flat

section is from s ¼ 0 to S1. The overall extent of the one-eighth section is s ¼ S2, so that the extent of the

circular arc corner is s ¼ ðS2 � S1Þ. The radius of the corner is designated R, and the constant internal

pressure is pi. The relationship between the radius of the corner and the overall length of the one-eighth
section is given by:
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R ¼ 4ðS2 � S1Þ
p

S2 ¼
Rp
4

þ S1 ð6Þ

Because the structure is composed of straight sections connected by circular arcs, the formulation of the

governing equations is different in those sections. Definitions of strains, stresses, and PE expressions are not

common across the junction between the flat and curved section at s ¼ S1. However, logically, all physical
quantities must be continuous across this junction. This leads to the possibility of having at least two

general approaches to the analysis. In the first approach, the structure is segregated into the curved and
straight sections, and separate displacement functions are assumed for each section. Symmetry boundary

conditions are imposed at the s ¼ 0, s ¼ S2 ends, while matching conditions are imposed at the junction

where s ¼ S1. In the second approach, the structure is separated for PE and stress–strain calculations, but

the displacement functions are assumed to cover the entire structure. For this second approach, only the

symmetry boundary conditions at the ends of the structure are needed. The first approach is presented in

this paper.

Symmetry of the laminate is assumed so that all Bij, ð Þ16, ð Þ26, and ð Þ45 couplings are neglected. The
displacement field for first-order shear deformation theory is taken to be:

uðx; y; zÞ ¼ u0ðx; yÞ þ z�aaðx; yÞ
vðx; y; zÞ ¼ v0ðx; yÞ þ z�bbðx; yÞ
wðx; y; zÞ ¼ wðx; yÞ

ð7Þ

The motivating factor for the inclusion of TSD is the disparity between in-plane and out-of-plane strengths
in fiber-reinforced materials. First-order theory yields a constant value of transverse shear strain through

the thickness of the plate, and thus requires shear correction factors. However, first-order theory is ‘‘by far

the most efficient (i.e., increased accuracy without an increase in computational effort)’’ (Ochoa and Reddy,

1992). There are five independent kinematic variables in three-dimensional first-order theory: displacements

u0, v0, and w, and the rotations �aa and �bb.
In the current ‘‘ring’’ analysis, one assumes plane strain, that is, ex ¼ oð Þ=ox ¼ 0. This eliminates the

consideration of u0 and �aa as unknowns and allows the neglect of the variation of quantities in the x-di-
rection. Therefore, in this analysis, there are three unknowns, v0, w, and �bb.

Based on the above assumptions, the strain–displacement relations for a flat plate become (neglecting

the second-order von K�aarm�aan terms; see Vinson (1999), Eqs. (2.48)–(2.50) or Ochoa and Reddy (1992),

Eq. (2.5–5)):

ey ¼
ov0
oy

þ z o
�bb

oy
¼ ey0 þ zjy eyz ¼

1

2
�bb

�
þ ow

oy

�
ð8Þ

The strain–displacement relations for a circular shell of radius R are given as (with the s-direction along the
shell, noting that os ¼ Roh; see Vinson (1993), Eqs. (15.2), (15.5), and (15.8)):

eh ¼
ov0
os

�
þ w
R

�
þ z o

�bb
os

¼ eh0 þ zjh ehz ¼
1

2
�bb

�
þ ow

os
� v0
R

�
ð9Þ

It was seen in initial efforts with the MPE method that a compact representation for the trial functions is
necessary to keep algebra at a manageable level. Therefore, the current approach is to use two sets of power

series functions (stated in their general summation form), one for the flat and one for the curved portions.

The forms of the trial displacement functions in the flat and circular arc sections (subscripts 1 and 2, res-

pectively) are:

1096 E.C. Preissner, J.R. Vinson / International Journal of Solids and Structures 40 (2003) 1089–1108



w1ðsÞ ¼
X1
n¼0

ansn w2ðsÞ ¼
X1
n¼0

bnsn

v1ðsÞ ¼
X1
n¼0

cnsn v2ðsÞ ¼
X1
n¼0

dnsn

�bb1ðsÞ ¼
X1
n¼0

fnsn �bb2ðsÞ ¼
X1
n¼0

gnsn

ð10Þ

There are twelve boundary conditions. At s ¼ 0 there are the symmetry conditions:

v1ð0Þ ¼ 0 ½Qsð0Þ�1 ¼ 0 �bb1ð0Þ ¼ 0 ð11Þ
Matching conditions are established at s ¼ S1:

w1ðS1Þ ¼ w2ðS1Þ ½NsðS1Þ�1 ¼ ½NsðS1Þ�2
�bb1ðS1Þ ¼ �bb2ðS1Þ ½MsðS1Þ�1 ¼ ½MsðS1Þ�2
v1ðS1Þ ¼ v2ðS1Þ ½QsðS1Þ�1 ¼ ½QsðS1Þ�2

ð12Þ

At s ¼ S2 there are the same three conditions as at s ¼ 0:

v2ðS2Þ ¼ 0 ½QsðS2Þ�2 ¼ 0 �bb2ðS2Þ ¼ 0 ð13Þ
In Eqs. (11)–(13), N , M , and Q are the integrated normal, moment, and shear stress resultants for plates,

and are defined as:

½N � ¼ ½A�fe0g þ ½B�fjg
½M � ¼ ½B�fe0g þ ½D�fjg
Qs ¼ 2ðA45exz þ A44eszÞ

where temperature and moisture effects have been neglected. In the above, ½A�, ½B�, and ½D� are the sub-
matrices of the overall stiffness matrix that relate the mid-plane strains, fe0g, and the curvatures, fjg, to the
integrated stress resultants. Definitions of these and further discussion can be found in, e.g., Vinson and
Sierakowski (1987).

Applying boundary condition #1, v1ð0Þ ¼ 0, gives that:

v1ð0Þ ¼
X1
n¼0

cnð0Þn ¼ c0 þ c1ð0Þ þ c2ð0Þ2 þ c3ð0Þ3 þ � � � ¼ 0

BC#1 ) c0 ¼ 0 ð14Þ
Neglecting coupling terms, boundary condition #2, Qsð0Þ ¼ 0, gives:

Qsjs¼0 ¼ A44 �bb1

�
þ ow1

os

�
s¼0

¼ 0 ð15Þ

From (10) and noting that power series can be manipulated term-by-term (see e.g., Greenberg, 1998,

p. 179):

dw1ðsÞ
ds

¼ d

ds

X1
n¼0

ansn ¼
X1
n¼0

d

ds
ðansnÞ ¼

X1
n¼1

nansn�1 ð16Þ

Thus:

Qsjs¼0 ¼
X1
n¼0

fnsn þ
X1
n¼1

nansn�1 ¼ f0 þ f1ð0Þ þ f2ð0Þ2 þ � � � þ a1 þ 2a2ð0Þ þ 3a3ð0Þ2 þ � � � ¼ 0 ð17Þ
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Therefore:

Qsð0Þ ¼ f0 þ a1 ¼ 0 ð18Þ
From boundary condition #3, �bb1ð0Þ ¼ 0:

�bb1ð0Þ ¼
X1
n¼0

fnsn ¼ f0 þ f1ð0Þ þ f2ð0Þ2 þ � � � ¼ 0 ð19Þ

Therefore:

BC#3 ) f0 ¼ 0 ð20Þ
This result, combined with that from Eq. (18) gives that:

BC#2;BC#3 ) a1 ¼ 0 ð21Þ
Updating the trial displacement functions (note the change in beginning index for v1 and �bb1):

w1ðsÞ ¼ a0 þ
X1
n¼2

ansn w2ðsÞ ¼
X1
n¼0

bnsn

v1ðsÞ ¼
X1
n¼1

cnsn v2ðsÞ ¼
X1
n¼0

dnsn

�bb1ðsÞ ¼
X1
n¼1

fnsn �bb2ðsÞ ¼
X1
n¼0

gnsn

ð22Þ

Apply boundary condition #4:

w1ðS1Þ ¼ w2ðS1Þ

a0 þ
X1
n¼2

anSn1 ¼
X1
n¼0

bnSn1
ð23Þ

The first constraint becomes:

k1 a0

 
þ
X1
n¼2

anSn1 �
X1
n¼0

bnSn1

!
¼ 0 ð24Þ

Apply boundary condition #5:

�bb1ðS1Þ ¼ �bb2ðS1ÞX1
n¼1

fnSn1 ¼
X1
n¼0

gnSn1
ð25Þ

The second constraint becomes:

k2
X1
n¼1

fnSn1

 
�
X1
n¼0

gnSn1

!
¼ 0 ð26Þ

The remaining boundary conditions are applied similarly to obtain the following constraints:

k3
X1
n¼1

cnSn1

 
�
X1
n¼0

dnSn1

!
¼ 0 ð27Þ

k4
X1
n¼1

ncnSn�11

 
�
X1
n¼1

ndnSn�11 � 1

R

X1
n¼0

bnSn1

!
¼ 0 ð28Þ
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k5
X1
n¼1

nfnSn�11

 
�
X1
n¼1

ngnSn�11

!
¼ 0 ð29Þ

k6
X1
n¼1

fnSn1

 
þ
X1
n¼2

nanSn�11 �
X1
n¼0

gnSn1 �
X1
n¼1

nbnSn�11 þ 1

R

X1
n¼0

dnSn1

!
¼ 0 ð30Þ

k7
X1
n¼0

dnSn2

 !
¼ 0 ð31Þ

k8
X1
n¼0

gnSn2

 
þ
X1
n¼1

nbnSn�12 � 1

R

X1
n¼0

dnSn2

!
¼ 0 ð32Þ

k9
X1
n¼0

gnSn2

 !
¼ 0 ð33Þ

In the current constraint method of solution, all of the boundary conditions not already satisfied (boundary

conditions #1–#3 were satisfied identically with the elimination of a1, c0, and f0) are applied as constraints

to the PE expression. Each of the nine constraints is multiplied by an unknown Lagrange multiplier and

added to the PE expression, V , to form a modified functional, K, that is then extremized.

As we cannot deal with infinite limits for the sums during actual calculations, the upper limits of the
power series given in Eq. (10) are taken to be m. Thus for each of w1, v1, and �bb1, in the flat section there will

be m unknown coefficients in each series. For each of w2, v2, and �bb2 in the corner there will be ðmþ 1Þ terms.

Thus the total number of unknown coefficients for all power series becomes 3mþ 3ðmþ 1Þ or 6mþ 3.

Adding in the nine Lagrange multipliers, the variation of K will result in a system of 6mþ 12 equations in

the 6mþ 12 unknowns.

Now that the constraints have been developed, the expression for the total PE is needed. Two expres-

sions, one each for the flat and curved parts, are combined and integrated with respect to s over their
respective bounds. The x-direction extent of the slice is assumed to be of unit width, and variations in the x-
direction are neglected. The expression for the PE of the flat plate portion is taken from Eq. (5.70) in

Vinson (1999), while the expression for the circular shell corner is taken from Eq. (4.20) in Preissner (2002).

Neglecting oð Þ=ox terms and any Bij or ð Þ45 coupling in the structure and applying the strain–displace-

ment relations, the total expression is therefore:

V ¼
Z S1

0

A22
2

dv1
ds

� �2

8<
: þ D22

2

d�bb1

ds

 !2

þ A44
�bb2
1

2

"
þ �bb1

dw1

ds
þ 1

2

dw1

ds

� �2
#9=
;ds

þ
Z S2

S1

A22
2

dv2
ds

� �2
"8<

: þ 2
w2

R
dv2
ds

þ w2

R

� �2#
þ D22

2

d�bb2

ds

 !2

þ A44
2

�bb2
2

"
þ 2�bb2

dw2

ds
� 2�bb2

v2
R
þ dw2

ds

� �2

� 2
dw2

ds
v2
R
þ v2

R

� �2#9=
;ds

�
Z S1

0

piw1 ds�
Z S2

S1

piw2 ds ð34Þ
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Eq. (34) is now expressed in terms of the power series and integrated with respect to s. The constraints are
added in, the variation is taken, and like variations are collected. As the variation is symmetric (i.e.,

dðabÞ ¼ ðdaÞbþ aðdbÞ), only terms on or above the diagonal are shown (the remaining terms in the matrix

are filled in as needed by symmetry). Therefore:

dK ¼ 0 ¼ ðk1 � piS1Þda0

þ
Xm
i¼2

A44
i2S2i�11

2i� 1
ai

"
þ
Xm
j>i

A44
ijSiþj�11

iþ j� 1
aj þ

Xm
j¼1
A44

iSiþj1

iþ j fj þ S
i
1k1 þ iSi�11 k6 � pi

Siþ11

iþ 1

#
dai

þ
Xm
i¼0

A22
R2

ðS2iþ12 � S2iþ11 Þ
2iþ 1

�8<
: þ A44

i2ðS2i�12 � S2i�11 Þ
2i� 1

� �
iP 1

�
bi

þ
Xm
j>i

A22
R2

ðSiþjþ12 � Siþjþ11 Þ
iþ jþ 1

"
þ A44

ijðSiþj�12 � Siþj�11 Þ
iþ j� 1

 !
iP 1

#
bj

þ
Xm
j¼0

A22
R
jðSiþj2 � Siþj1 Þ

iþ j

� �
jP 1

"
� A44

R
iðSiþj2 � Siþj1 Þ

iþ j

� �
iP 1

#
dj

þ
Xm
j¼0
A44

iðSiþj2 � Siþj1 Þ
iþ j gj

 !
iP 1

� Si1k1 �
Si1
R

k4 � ðiSi�11 k6ÞiP 1

þ ðiSi�12 k8ÞiP 1 � pi
ðSiþ12 � Siþ11 Þ

iþ 1

9=
;dbi

þ
Xm
i¼1

A22
i2S2i�11

2i� 1
ci

"
þ
Xm
j>i

A22
ijSiþj�11

iþ j� 1

 !
cj þ Si1k3 þ iSi�11 k4

#
dci

þ
Xm
i¼0

A22
i2ðS2i�12 � S2i�11 Þ

2i� 1

� �
iP 1

�(
þ A44
R2

ðS2iþ12 � S2iþ11 Þ
2iþ 1

�
di

þ
Xm
j>i

A22
ijðSiþj�12 � Siþj�11 Þ

iþ j� 1

 !
iP 1

"
þ A44
R2

ðSiþjþ12 � Siþjþ11 Þ
iþ jþ 1

#
dj

�
Xm
j¼0

A44
R

ðSiþjþ12 � Siþjþ11 Þ
iþ jþ 1

gj � Si1k3 � ðiSi�11 k4ÞiP 1 þ
Si1
R

k6 þ Si2k7 �
Si2
R

k8

)
ddi

þ
Xm
i¼1

A44
S2iþ11

2iþ 1

�(
þ D22

i2S2i�11

2i� 1

�
fi þ

Xm
j>i

A44
Siþjþ11

iþ jþ 1

 
þ D22

ijSiþj�11

iþ j� 1

!
fj

þ Si1k2 þ iSi�11 k5 þ Si1k6

)
dfi þ

Xm
i¼0

A44
ðS2iþ12 � S2iþ11 Þ

2iþ 1

�(
þ D22

i2ðS2i�12 � S2i�11 Þ
2i� 1

� �
iP 1

�
gi

þ
Xm
j>i

A44
ðSiþjþ12 � Siþjþ11 Þ

iþ jþ 1

"
þ D22

ijðSiþj�12 � Siþj�11 Þ
iþ j� 1

 !
iP 1

#
gj � Si1k2

� ðiSi�11 k5ÞiP 1 � Si1k6 þ Si2k8 þ Si2k9

)
dgi ð35Þ
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Writing the variation of the PE expression in the general ‘‘summation’’ form above allows for a variable

number of terms to be taken in the solution. This allows the convergence of the method to be studied. To

accomplish this efficiently, and anticipating that a large number of terms might be necessary, a FORTRAN

computer program was written to calculate the coefficients and solve the system.
The variation of the PE expression, as given in Eq. (35) above, is set equal to zero to determine the

unknown coefficients. As the variations of the unknown coefficients (i.e., dai, dbi, etc.) are by assumption

non-zero, the expression within the brackets that each variation multiplies must therefore be equal to zero.

This process leads to the solution of a system of the form Ax ¼ b. Eq. (35) defines the entries to fill the

coefficient matrix, A, and load vector, b. The coefficients of the power series are numbered consecutively

from the ais through the gis, and these numbers define their row/column location in the matrices, and there

are a total of ð6mþ 3Þ coefficients. The row location is determined by which variable the variation is for,

while the column location is determined by the variable that appears inside the variation brackets. For
computation, the primary controlling index of the expression is i, and both i and (secondarily, when

necessary) j go to the limit of m.

6. Convergence of power series solution

The results for this approach, with representation of the deflections by arbitrary-ordered power series,

were compact, efficient, and accurate in two dimensions. Stress and displacement calculations for limiting

cases of flat plates and circular cylinders showed appropriate and accurate behavior. The convergence

behavior of the power series representation is far better than that for a trigonometric series representation,

with only a modest change in convergence performance with differentiation. No more than a fourth-order

representation was necessary to obtain a converged deflection, versus 500–1000 terms for a trigonometric

approach (Preissner, 2002).
The convergence was so rapid and accurate that the authors wondered if the solutions for the higher-

ordered polynomials were indeed different from each other. Fig. 3 shows that they are indeed different. This

plot shows the lateral displacement function for the circular arc section, w2 plotted over the entire range of

Lateral Deflection, w 2, as a Function of Arc Length, s,
and Polynomial Power
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0.020

0.030

0.040

0.050

0.060

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

m=2

m=6

m=15

m=4

m=50

m=5

m=3

Boundary between
flat and curved
sections.

Fig. 3. Convergence of lateral deflection in the circular arc section, w2 as a function of number of terms, m, in the power series.
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arc length. Note that this solution is only meant to apply in the range S1 6 s6 S2. However, examining the
solution in the range 06 s6 S1 shows that the different orders of solution do have different values in that

range, despite the excellent agreement over the applicable range.

The convergence of the derivative quantities N , M , Q, upper and lower skin hoop stresses and core shear
stress (not shown) were also excellent. Quantities such as N , M , Q, and rz, which depend on the derivative

of only one primary variable converge only slightly slower than the primary variables themselves, at three

to five terms. The skin stresses depend on the derivatives of two primary variables, and so converge the

slowest of all; to remove nearly all of the fluctuations, 10–15 terms are needed. Even this is far better

performance than the trigonometric series. Arfken (1966) notes how valuable and powerful power series

are, due to their excellent convergence and ability to robustly withstand differentiation and integration as

many times as necessary.

7. Results and discussion

A standard problem was used as a basis for comparison of the different methodologies (Preissner,

Forbes, and Thomsen) being developed. The geometry of this standard was loosely based on the size of the

cargo compartment of a Lockheed C-5A Galaxy transport aircraft. The geometry for the current research

was limited to a ‘‘rounded square’’ cross-section, due to the formulation of the MPE solution methods. The

reader is referred to Fig. 1(a) and (b) for diagrams of the full cross-section and the portion that was ana-

lyzed.

Material properties

T300/5208 carbon/epoxy

E11 ¼ 153:0 GPa E22 ¼ 10:9 GPa G12 ¼ 5:6 GPa m12 ¼ m13 ¼ 0:3 m23 ¼ 0:02137

Klegecell foam (Anonymous, 2000)

E11 ¼ E22 ¼ 145:7 MPa E33 ¼ 182:7 MPa G13 ¼ G23 ¼ 69:0 MPa G12 ¼ 55:2 MPa

m12 ¼ m13 ¼ 0:3

Because of its comprehensive and well-documented nature, the finite element results of ABAQUS are taken
as the ‘‘best’’ answer. The ABAQUS analysis used the S4R shell element (Anonymous, 1997), with a grid of

Geometry and loading:

S1 ¼ 2:0 m Length of the horizontal flat section from the vertical midplane to the beginning of

the circular arc corner section.

R ¼ 1:5 m Radius of the corner section.

t1 ¼ 0:005 m Thickness of the inner (lower) face of the sandwich.

t3 ¼ 0:005 m Thickness of the outer (upper) face of the sandwich.

hc ¼ 0:20 m Thickness of the sandwich core.

pi ¼ 0:1 MPa Internal pressure.

Materials

Inner face T300/5208 unidirectional hoop wrap (all fibers in the hoop, i.e., circumferential,

direction).
Outer face T300/5208 unidirectional hoop wrap.

Core Klegecell foam.
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eight elements in the flat section and eight elements in the corner. No significant discrepancies between the

MPE and ABAQUS results were apparent. In hindsight, this agreement should be anticipated as both the

FEM and MPE methods are formulated based on variational principles. The agreement between the FEM/

MPE methods and the Forbes results is encouraging due to the disparate methods used to obtain said
results. As the Forbes results also matched those of Thomsen, only the Forbes results are shown for clarity.

Fig. 4 compares the lateral deflection results, and it is seen that Forbes and the MPE results underpredict

the maximum deflection by approximately 2.5% and 2.8% and underpredict the minimum deflection by

0.1% and 4.3%, respectively. Fig. 5 compares the in-plane deflection results; the MPE data is seen to be very

-0.010

-0.005

0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.0 0.5 1.0 1.5

ABAQUS (grid = 16)
MPE Power Series (m = 15)
Forbes GDE

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Fig. 4. Comparison of lateral deflection, w from ABAQUS, current MPE, and Forbes GDE methods.
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-1.0e-3
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5.0e-4
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Fig. 5. Comparison of in-plane deflection, v from ABAQUS, current MPE, and Forbes GDE methods.
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close to the ABAQUS results in the straight section and underpredict the deflection in the curved section,

while the Forbes data has the opposite behavior. Fig. 6 compares the normal rotation, �bbs, between
ABAQUS and the MPE method; the MPE results are in very close agreement. Data on the rotation was not

available for the Forbes method.

Comparison of skin hoop stress data is shown in Figs. 7 and 8; the agreement between the three methods

is excellent. Comparison of core shear stress is shown in Fig. 9; agreement here is not as good as with the

skin stress. At the ends, agreement is good, but both MPE and Forbes under predict the shear stress near

the junction by about 8%. In the MPE formulation, the core shear stress is a function of the core shear

modulus, G the normal rotation, �bbs, and the slope of the lateral deflection, ow=os. As G is an input to

0

2.0e-3

4.0e-3

6.0e-3

8.0e-3

1.0e-2

1.2e-2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

ABAQUS (grid = 16)
MPE Power Series (m = 15)

Fig. 6. Comparison of normal rotation, �bb from ABAQUS and current MPE methods.

Fig. 7. Comparison of upper skin hoop stress, rs from ABAQUS, current MPE, and Forbes GDE methods.
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ABAQUS, this should not be a factor, and it is seen in Fig. 6 that the rotations agree. Fig. 10 shows that the
slope of the lateral deflection for the MPE and Forbes solutions are about 3% less than that calculated from

the ABAQUS deflections, which contributes to the difference in core stress. The balance of the difference is

likely due to differences in formulation for the calculation of the stress between MPE and ABAQUS. All

MPE calculations shown in Figs. 4–10 are for 15 terms in the series, i.e., m ¼ 15.

Fig. 8. Comparison of lower skin hoop stress, rs from ABAQUS, current MPE, and Forbes GDE methods.
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Fig. 9. Comparison of core shear stress, rsz from ABAQUS, current MPE, and Forbes GDE methods.
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8. Conclusions

Extension of this solution methodology to other shapes, such as a ‘‘rounded rectangle’’, a trapezoid, an

ogive, etc., should be straightforward. Any shape that could be broken into flat sections, circular arc

sections, elliptical sections, tapered sections, etc. could be handled by formulating the PE expression for

each of these basic shapes, and then assembling the expressions appropriately. Inclusion of the desired

physical phenomena, such as Bij coupling and even non-linear effects, could be incorporated. Indeed, once

the PE expressions for the subsections were developed, it would be feasible to combine them into one larger
computer program that would allow many sections to be readily joined together in different ways.

The results of the MPE analysis have excellent accuracy as compared to those of a finite element

analysis. This work shows how the restriction of meeting boundary conditions a priori with the displace-

ment trial functions can be lifted to allow for a wider choice of functions. Although there is a lack of

experimental data for comparison, the good agreement between the MPE method, the Forbes closed-form

solution, the Thomson integral solution, and the finite element analysis increases the confidence that all

methods are predicting the structural response properly. The MPE method provides an alternative to the

two-dimensional closed-form solution from Matlab (Forbes, 1999), as this could not be extended to three
dimensions. The MPE method had a short solution time, and was flexible within the parameters for which it

was programmed. However, as formulated, it was not as flexible as the other methods, and would need to

be improved as described in the previous paragraph. In addition, although it had been hoped in the be-

ginning that the MPE method would be simpler to formulate than the other methods, in the end, the initial

set-up and learning curve were just as complicated. However, any future work will benefit from this in-

vestment of effort.
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Fig. 10. Comparison of slope of lateral deflection, ow=os from ABAQUS, current MPE, and Forbes GDE methods.
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